Back to Search
Start Over
Higher-order interactions shape microbial interactions as microbial community complexity increases
- Source :
- Scientific Reports, Vol 12, Iss 1, Pp 1-16 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract Non-pairwise interactions, or higher-order interactions (HOIs), in microbial communities have been described as significant drivers of emergent features in microbiomes. Yet, the re-organization of microbial interactions between pairwise cultures and larger communities remains largely unexplored from a molecular perspective but is central to our understanding and further manipulation of microbial communities. Here, we used a bottom-up approach to investigate microbial interaction mechanisms from pairwise cultures up to 4-species communities from a simple microbiome (Hafnia alvei, Geotrichum candidum, Pencillium camemberti and Escherichia coli). Specifically, we characterized the interaction landscape for each species combination involving E. coli by identifying E. coli’s interaction-associated mutants using an RB-TnSeq-based interaction assay. We observed a deep reorganization of the interaction-associated mutants, with very few 2-species interactions conserved all the way up to a 4-species community and the emergence of multiple HOIs. We further used a quantitative genetics strategy to decipher how 2-species interactions were quantitatively conserved in higher community compositions. Epistasis-based analysis revealed that, of the interactions that are conserved at all levels of complexity, 82% follow an additive pattern. Altogether, we demonstrate the complex architecture of microbial interactions even within a simple microbiome, and provide a mechanistic and molecular explanation of HOIs.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9d15109f85f74981810da287cc2bcb32
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-022-25303-1