Back to Search Start Over

On $ H' $-splittings of a handlebody

Authors :
Yan Xu
Bing Fang
Fengchun Lei
Source :
AIMS Mathematics, Vol 9, Iss 9, Pp 24385-24393 (2024)
Publication Year :
2024
Publisher :
AIMS Press, 2024.

Abstract

Let $ M $ be a compact connected orientable 3-manifold and $ F $ be a compact connected orientable surface properly embedded in $ M $. If $ F $ cuts $ M $ into two handlebodies $ X $ and $ Y $ (i.e., $ M = X\cup_FY $), then we say that $ F $ is an $ H' $-splitting surface for $ M $ and call $ X\cup_FY $ an $ H' $-splitting for $ M $. When the $ H' $-splitting surface $ F $ is incompressible in a handlebody $ H $, a characteristic of an $ H' $-splitting $ H_1\cup_F H_2 $ to denote $ H $ is already known. In the present paper, we generalize the above result as follows: Let $ H $ be a handlebody of genus $ g\geq 1 $, $ X\cup_F Y $ an $ H' $-splitting for $ H $. Then, either $ X\cup_F Y $ is stabilized, or there exists a reducing system $ \mathcal{J}_1\cup\mathcal{K}_1 $ of $ F $, such that $ \mathcal{J}_1 $ is quasi-primitive in $ Y $ and $ \mathcal{K}_1 $ is quasi-primitive in $ X $. Combining the result with the known result, we obtain a characteristic of an $ H' $-splitting $ H_1\cup_F H_2 $ to denote a handlebody.

Details

Language :
English
ISSN :
24736988
Volume :
9
Issue :
9
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.9cff2a4e4363459291d6781f69112c10
Document Type :
article
Full Text :
https://doi.org/10.3934/math.20241187?viewType=HTML