Back to Search Start Over

A Field-Tailored Reverse Transcription Loop-Mediated Isothermal Assay for High Sensitivity Detection of Plasmodium falciparum Infections.

Authors :
Sylvie Kemleu
Dylan Guelig
Carole Eboumbou Moukoko
Estelle Essangui
Steven Diesburg
Abas Mouliom
Bernard Melingui
Jeanne Manga
Christiane Donkeu
Annie Epote
Gaëtan Texier
Paul LaBarre
Robert Burton
Lawrence Ayong
Source :
PLoS ONE, Vol 11, Iss 11, p e0165506 (2016)
Publication Year :
2016
Publisher :
Public Library of Science (PLoS), 2016.

Abstract

Highly sensitive and field deployable molecular diagnostic tools are critically needed for detecting submicroscopic, yet transmissible levels of malaria parasites prevalent in malaria endemic countries worldwide. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and evaluated in comparison with thick blood smear microscopy, an antigen-based rapid diagnostic test (RDT), and an in-house RT-PCR targeting the same RT-LAMP transcript. The optimized assay detected Plasmodium falciparum infections in as little as 0.25ng of total parasite RNA, and exhibited a detection limit of 0.08 parasites/ μL when tested directly on infected whole blood lysates, or ~0.0008 parasites/ μL when using RNA extracts. Assay positivity was observed as early as eight minutes from initiation of the RT-LAMP and in most cases the reaction was complete before twenty minutes. Clinical evaluation of the assay on 132 suspected malaria cases resulted in a positivity rate of 90% for RT-LAMP using extracted RNA, and 85% when using whole blood lysates. The positivity rates were 70% for P. falciparum-specific RDT, 83% for RT-PCR, and 74% for thick blood smear microscopy (Mean parasite density = 36,986 parasites/ μL). Concordance rates between the developed RT-LAMP and comparator tests were greater than 75%, the lowest being with light microscopy (78%, McNemar's test: P = 0.0002), and the highest was with RT-PCR (87%, McNemar's test: P = 0.0523). Compared to reference RT-PCR, assay sensitivity was 90% for RT-LAMP on whole blood, and 96% for RT-LAMP using corresponding RNA extracts. Electricity-free heaters were further developed and evaluated in comparison with a battery-operated isothermal amplification machine for use with the developed test in resource-limited settings. Taken together, the data highlight the benefits of targeting high abundant RNA transcripts in molecular diagnosis, as well as the potential usefulness of the developed RT-LAMP-assay in malaria diagnosis in low to high parasite density settings.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
11
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.9c8bc10a997043a3a5a0bf8480cbfd2d
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0165506