Back to Search Start Over

Biological Risk Assessment of Three Dental Composite Materials following Gas Plasma Exposure

Authors :
Sander Bekeschus
Lea Miebach
Jonas Pommerening
Ramona Clemen
Katharina Witzke
Source :
Molecules, Vol 27, Iss 14, p 4519 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Gas plasma is an approved technology that generates a plethora of reactive oxygen species, which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if such materials are altered upon gas plasma exposure. To this end, we generated a new in-house workflow for three commonly used resin-based composites following gas plasma treatment and incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The inflammatory consequences were assessed using quantitative analysis of 13 different chemokines and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A modest but significant cytotoxic effect was observed in the metabolic activity and viability after plasma treatment for all three composites. This was only partially treatment time-dependent and the composites alone affected the cells to some extent, as evident by differential secretion profiles of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6, IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson’s r > 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells thereafter could not replicate the effects, pointing to the potential that surface modifications elicited the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material surfaces to a certain extent, leading to measurable but overall modest biological effects.

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.9c378b95c44b98b50f8f94bdbbdd63
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules27144519