Back to Search Start Over

Empowering Data Sharing and Analytics through the Open Data Commons for Traumatic Brain Injury Research

Authors :
Austin Chou
Abel Torres-Esp?n
J. Russell Huie
Karen Krukowski
Sangmi Lee
Amber Nolan
Caroline Guglielmetti
Bridget E. Hawkins
Myriam M. Chaumeil
Geoffrey T. Manley
Michael S. Beattie
Jacqueline C. Bresnahan
Maryann E. Martone
Jeffrey S. Grethe
Susanna Rosi
Adam R. Ferguson
Source :
Neurotrauma Reports, Vol 3, Iss 1, Pp 139-157 (2022)
Publication Year :
2022
Publisher :
Mary Ann Liebert, 2022.

Abstract

Traumatic brain injury (TBI) is a major public health problem. Despite considerable research deciphering injury pathophysiology, precision therapies remain elusive. Here, we present large-scale data sharing and machine intelligence approaches to leverage TBI complexity. The Open Data Commons for TBI (ODC-TBI) is a community-centered repository emphasizing Findable, Accessible, Interoperable, and Reusable data sharing and publication with persistent identifiers. Importantly, the ODC-TBI implements data sharing of individual subject data, enabling pooling for high-sample-size, feature-rich data sets for machine learning analytics. We demonstrate pooled ODC-TBI data analyses, starting with descriptive analytics of subject-level data from 11 previously published articles (N?=?1250 subjects) representing six distinct pre-clinical TBI models. Second, we perform unsupervised machine learning on multi-cohort data to identify persistent inflammatory patterns across different studies, improving experimental sensitivity for pro- versus anti-inflammation effects. As funders and journals increasingly mandate open data practices, ODC-TBI will create new scientific opportunities for researchers and facilitate multi-data-set, multi-dimensional analytics toward effective translation.

Details

Language :
English
ISSN :
2689288X
Volume :
3
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Neurotrauma Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.9bc6991af42248f4a5e5593c83ddfc1f
Document Type :
article
Full Text :
https://doi.org/10.1089/NEUR.2021.0061