Back to Search
Start Over
Atmospheric ammonia retrieval from the TANSO-FTS/GOSAT thermal infrared sounder
- Source :
- Atmospheric Measurement Techniques, Vol 13, Pp 309-321 (2020)
- Publication Year :
- 2020
- Publisher :
- Copernicus Publications, 2020.
-
Abstract
- Hyperspectral thermal infrared sounders enable us to grasp the global behavior of minor atmospheric constituents. Ammonia, which imparts large impacts on the atmospheric environment by reacting with other species, is one of them. In this work, we present an ammonia retrieval system that we developed for the Greenhouse Gases Observing Satellite (GOSAT) and the estimates of global atmospheric ammonia column amounts that we derived from 2009 to 2014. The horizontal distributions of the seasonal ammonia column amounts represent significantly high values stemming from six anthropogenic emission source areas and four biomass burning ones. The monthly mean time series of these sites were investigated, and their seasonality was clearly revealed. A comparison with the Infrared Atmospheric Sounding Interferometer (IASI) ammonia product showed good agreement spatially and seasonally, though there are some differences in detail. The values from GOSAT tend to be slightly larger than those from IASI for low concentrations, especially in spring and summer. On the other hand, they are lower for particularly high concentrations during summer, such as eastern China and northern India. In addition, the largest differences were observed in central Africa. These differences seem to stem from the temporal gaps in observations and the fundamental differences in the retrieval systems.
- Subjects :
- Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
Subjects
Details
- Language :
- English
- ISSN :
- 18671381 and 18678548
- Volume :
- 13
- Database :
- Directory of Open Access Journals
- Journal :
- Atmospheric Measurement Techniques
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9bae8210b34ce781b5dff7d38e98e0
- Document Type :
- article
- Full Text :
- https://doi.org/10.5194/amt-13-309-2020