Back to Search Start Over

Metabolic engineering of cucurbitacins in Cucurbita pepo hairy roots

Authors :
Aldo Almeida
Lemeng Dong
Theis H. Thorsen
Morten H. Raadam
Bekzod Khakimov
Natalia Carreno-Quintero
Sotirios C. Kampranis
Søren Bak
Source :
Frontiers in Plant Science, Vol 13 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

In this paper we show that metabolic engineering in Cucurbita pepo hairy roots can be used to both effectively increase and modify cucurbitacins. Cucurbitacins are highly-oxygenated triterpenoids originally described in the Cucurbitaceae family, but have since been found in 15 taxonomically distant plant families. Cucurbitacin B, D, E and I are the most widespread amongst the Cucurbitaceae and they have both important biological and pharmacological activities. In this study C. pepo hairy roots were used as a platform to boost production and alter the structures of the afore mentioned cucurbitacins by metabolic engineering to potentially provide new or more desirable bioactivities. We report that the ability to induce cucurbitacin biosynthesis by basic Helix-Loop-Helix transcription factors is partially conserved within the Cucurbitaceae and therefore can potentially be used as a biotechnological tool to increase cucurbitacins in several genera of this family. Additionally, overexpression of a novel acyltransferase from cucurbitacin producing Iberis amara generates a hitherto undescribed acetylation at the C3-hydroxyl group of the cucurbitadienol backbone. While overexpression of the cytochromes P450 CsCYP88L2 and McCYP88L7 from Cucumis sativus and Momordica charantia (respectively), results in accumulation of new spectral feature as revealed by High resolution liquid chromatography mass spectroscopy analysis; the m/z of the new peak supports it might be a cucurbitacin hydroxylated at the C19 position in C. pepo hairy roots. Finally, this paper is a case study of how hairy roots can be used to metabolically engineer and introduce novel modifications in metabolic pathways that have not been fully elucidated.

Details

Language :
English
ISSN :
1664462X
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.9b5e657ee2149f985cc1b2bfeb666ce
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2022.1021907