Back to Search Start Over

Predicting the Risk of Unplanned Readmission at 30 Days After PCI: Development and Validation of a New Predictive Nomogram

Authors :
Xu W
Tu H
Xiong X
Peng Y
Cheng T
Source :
Clinical Interventions in Aging, Vol Volume 17, Pp 1013-1023 (2022)
Publication Year :
2022
Publisher :
Dove Medical Press, 2022.

Abstract

Wenjun Xu,1,2 Hui Tu,1 Xiaoyun Xiong,1 Ying Peng,1,2 Ting Cheng1,2 1Department of Nursing, the Second Affiliated Hospital of Nanchang University, NanChang, Jiangxi, 330000, People’s Republic of China; 2School of Nursing, Nanchang University, NanChang, Jiangxi, 330000, People’s Republic of ChinaCorrespondence: Hui Tu, Department of Nursing, the Second Affiliated Hospital of Nanchang University, 1 Minde Road, NanChang, Jiangxi, 330000, People’s Republic of China, Tel +86 135-76095925, Email 12674789@qq.comObjective: This study aimed to develop and validate a risk prediction model that can be used to identify percutaneous coronary intervention (PCI) patients at high risk for 30-day unplanned readmission.Patients and Methods: We developed a prediction model based on a training dataset of 1348 patients after PCI. The data were collected from January 2020 to December 2020. Clinical characteristics, laboratory data and risk factors were collected using the hospital database. The LASSO regression method was applied to filter variables and select predictors, and feature selection for a 30-day readmission risk model was optimized using least absolute shrinkage. Multivariate logistic regression was used to construct a nomogram. The performance and clinical utility of the nomogram were evaluated with a receiver operating characteristic (ROC) curve, a calibration curve, and decision curve analysis (DCA). Internal validation of the predictive accuracy was performed using bootstrapping validation.Results: The predictors included in the prediction nomogram were medical insurance, length of stay, left ventricular ejection fraction on admission, history of hypertension, the presence of chronic lung disease, the presence of anemia, and serum creatinine level on admission. The area under the receiver operating characteristic curve for the predictive model was 0.735 (95% CI: 0.711– 0.759). The P value of the Hosmer–Lemeshow goodness of fit test was 0.326, indicating good calibration, and the calibration curves showed good agreement between the classifications and actual observations. DCA also demonstrated that the nomogram was clinically useful. A high c-index value of 0.723 was obtained during the internal validation.Conclusion: We developed an easy-to-use nomogram model to predict the risk of readmission 30 days after discharge for PCI patients. This risk prediction model may serve as a guide for screening high-risk patients and allocating resources for PCI patients at the time of hospital discharge and may provide a reference for preventive care interventions.Keywords: percutaneous coronary intervention, 30-day readmission, nomogram, prediction model

Details

Language :
English
ISSN :
11781998
Volume :
ume 17
Database :
Directory of Open Access Journals
Journal :
Clinical Interventions in Aging
Publication Type :
Academic Journal
Accession number :
edsdoj.9aae83f31d75480a944d2a46ca4a927a
Document Type :
article