Back to Search Start Over

Imaging-based clusters in former smokers of the COPD cohort associate with clinical characteristics: the SubPopulations and intermediate outcome measures in COPD study (SPIROMICS)

Authors :
Babak Haghighi
Sanghun Choi
Jiwoong Choi
Eric A. Hoffman
Alejandro P. Comellas
John D. Newell
Chang Hyun Lee
R. Graham Barr
Eugene Bleecker
Christopher B. Cooper
David Couper
Mei Lan Han
Nadia N. Hansel
Richard E. Kanner
Ella A. Kazerooni
Eric A. C. Kleerup
Fernando J. Martinez
Wanda O’Neal
Robert Paine
Stephen I. Rennard
Benjamin M. Smith
Prescott G. Woodruff
Ching-Long Lin
Source :
Respiratory Research, Vol 20, Iss 1, Pp 1-14 (2019)
Publication Year :
2019
Publisher :
BMC, 2019.

Abstract

Abstract Background Quantitative computed tomographic (QCT) imaging-based metrics enable to quantify smoking induced disease alterations and to identify imaging-based clusters for current smokers. We aimed to derive clinically meaningful sub-groups of former smokers using dimensional reduction and clustering methods to develop a new way of COPD phenotyping. Methods An imaging-based cluster analysis was performed for 406 former smokers with a comprehensive set of imaging metrics including 75 imaging-based metrics. They consisted of structural and functional variables at 10 segmental and 5 lobar locations. The structural variables included lung shape, branching angle, airway-circularity, airway-wall-thickness, airway diameter; the functional variables included regional ventilation, emphysema percentage, functional small airway disease percentage, Jacobian (volume change), anisotropic deformation index (directional preference in volume change), and tissue fractions at inspiration and expiration. Results We derived four distinct imaging-based clusters as possible phenotypes with the sizes of 100, 80, 141, and 85, respectively. Cluster 1 subjects were asymptomatic and showed relatively normal airway structure and lung function except airway wall thickening and moderate emphysema. Cluster 2 subjects populated with obese females showed an increase of tissue fraction at inspiration, minimal emphysema, and the lowest progression rate of emphysema. Cluster 3 subjects populated with older males showed small airway narrowing and a decreased tissue fraction at expiration, both indicating air-trapping. Cluster 4 subjects populated with lean males were likely to be severe COPD subjects showing the highest progression rate of emphysema. Conclusions QCT imaging-based metrics for former smokers allow for the derivation of statistically stable clusters associated with unique clinical characteristics. This approach helps better categorization of COPD sub-populations; suggesting possible quantitative structural and functional phenotypes.

Details

Language :
English
ISSN :
1465993X
Volume :
20
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Respiratory Research
Publication Type :
Academic Journal
Accession number :
edsdoj.9a97e79d2f194a75b46c97855536bef6
Document Type :
article
Full Text :
https://doi.org/10.1186/s12931-019-1121-z