Back to Search Start Over

A model-free method to learn multiple skills in parallel on modular robots

Authors :
Fuda van Diggelen
Nicolas Cambier
Eliseo Ferrante
A. E. Eiben
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Legged robots are well-suited for deployment in unstructured environments but require a unique control scheme specific for their design. As controllers optimised in simulation do not transfer well to the real world (the infamous sim-to-real gap), methods enabling quick learning in the real world, without any assumptions on the specific robot model and its dynamics, are necessary. In this paper, we present a generic method based on Central Pattern Generators, that enables the acquisition of basic locomotion skills in parallel, through very few trials. The novelty of our approach, underpinned by a mathematical analysis of the controller model, is to search for good initial states, instead of optimising connection weights. Empirical validation in six different robot morphologies demonstrates that our method enables robots to learn primary locomotion skills in less than 15 minutes in the real world. In the end, we showcase our skills in a targeted locomotion experiment.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.9a73092b0cea4d7f8bee50036a7259a5
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50131-4