Back to Search Start Over

Enhancing fairness in AI-enabled medical systems with the attribute neutral framework

Authors :
Lianting Hu
Dantong Li
Huazhang Liu
Xuanhui Chen
Yunfei Gao
Shuai Huang
Xiaoting Peng
Xueli Zhang
Xiaohe Bai
Huan Yang
Lingcong Kong
Jiajie Tang
Peixin Lu
Chao Xiong
Huiying Liang
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Questions of unfairness and inequity pose critical challenges to the successful deployment of artificial intelligence (AI) in healthcare settings. In AI models, unequal performance across protected groups may be partially attributable to the learning of spurious or otherwise undesirable correlations between sensitive attributes and disease-related information. Here, we introduce the Attribute Neutral Framework, designed to disentangle biased attributes from disease-relevant information and subsequently neutralize them to improve representation across diverse subgroups. Within the framework, we develop the Attribute Neutralizer (AttrNzr) to generate neutralized data, for which protected attributes can no longer be easily predicted by humans or by machine learning classifiers. We then utilize these data to train the disease diagnosis model (DDM). Comparative analysis with other unfairness mitigation algorithms demonstrates that AttrNzr outperforms in reducing the unfairness of the DDM while maintaining DDM’s overall disease diagnosis performance. Furthermore, AttrNzr supports the simultaneous neutralization of multiple attributes and demonstrates utility even when applied solely during the training phase, without being used in the test phase. Moreover, instead of introducing additional constraints to the DDM, the AttrNzr directly addresses a root cause of unfairness, providing a model-independent solution. Our results with AttrNzr highlight the potential of data-centered and model-independent solutions for fairness challenges in AI-enabled medical systems.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.9a547ad5d3064b81a196dab3431f095c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-52930-1