Back to Search
Start Over
Plastrum Testudinis Extracts Promote BMSC Proliferation and Osteogenic Differentiation by Regulating Let-7f-5p and the TNFR2/PI3K/AKT Signaling Pathway
- Source :
- Cellular Physiology and Biochemistry, Vol 47, Iss 6, Pp 2307-2318 (2018)
- Publication Year :
- 2018
- Publisher :
- Cell Physiol Biochem Press GmbH & Co KG, 2018.
-
Abstract
- Background/Aims: Plastrum testudinis extracts (PTE) show osteoprotective effects on glucocorticoid-induced osteoporosis in vivo and in vitro. However, the underlying molecular mechanism of PTE in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is unclear. Methods: BMSC proliferation was investigated using the Cell Counting Kit-8 assay. BMSC differentiation and osteogenic mineralization were assayed using alkaline phosphatase and Alizarin red staining, respectively. The mRNA expression levels of Let-7f-5p, Tnfr2, Traf2, Pi3k, Akt, β-catenin, Gsk3β, Runx2, and Ocn were measured using real time quantitative polymerase chain reaction. Protein levels of TNFR2, TRAF2, p-PI3K, p-AKT, p-β-CATENIN, and p-GSK3β were analyzed by western blotting. The functional relationship of Let-7f-5p and Tnfr2 was determined by luciferase reporter assays. Results: The optimum concentration for PTE was 30 μg/ml. PTE significantly promoted BMSC osteogenic differentiation and mineralization after 7 and 14 days in culture, respectively. The combination of PTE and osteogenic induction exhibited significant synergy. PTE upregulated Let-7f-5p, β-catenin, Runx2, and Ocn mRNA expression, and downregulated Tnfr2, Traf2, Pi3k, Akt, and Gsk3β mRNA expression. PTE inhibited TNFR2, TRAF2, and p-β-CATENIN protein expression, and promoted p-PI3K, p-AKT, and p-GSK3β protein expression. In addition, Tnfr2 was a functional target of Let-7f-5p in 293T cells. Conclusions: Our results suggested that PTE may promote BMSC proliferation and osteogenic differentiation via a mechanism associated with the regulation of Let-7f-5p and the TNFR2/PI3K/AKT signaling pathway.
Details
- Language :
- English
- ISSN :
- 10158987 and 14219778
- Volume :
- 47
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Cellular Physiology and Biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9a32ee434f42129926651d99676aed
- Document Type :
- article
- Full Text :
- https://doi.org/10.1159/000491541