Back to Search Start Over

Systematic auditing is essential to debiasing machine learning in biology

Authors :
Fatma-Elzahraa Eid
Haitham A. Elmarakeby
Yujia Alina Chan
Nadine Fornelos
Mahmoud ElHefnawi
Eliezer M. Van Allen
Lenwood S. Heath
Kasper Lage
Source :
Communications Biology, Vol 4, Iss 1, Pp 1-9 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Fatma-Elzahraa Eid et al. illustrate a principled approach for identifying biases that can inflate the performance of biological machine learning models. When applied to three biomedical prediction problems, they identify previously unrecognized biases and ultimately show that models are likely to learn primarily from data biases when there is insufficient learnable signal in the data.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
4
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.99b8c372383a4995a2577d5c731b5219
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-021-01674-5