Back to Search Start Over

Proteomic analysis of mitochondria associated membranes in renal ischemic reperfusion injury

Authors :
Yi Li
Hua-bin Wang
Jin-long Cao
Wen-jun Zhang
Hai-long Wang
Chang-hong Xu
Kun-peng Li
Yi Liu
Ji-rong Wang
Hua-lan Ha
Sheng-jun Fu
Li Yang
Source :
Journal of Translational Medicine, Vol 22, Iss 1, Pp 1-23 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background The mitochondria and endoplasmic reticulum (ER) communicate via contact sites known as mitochondria associated membranes (MAMs). Many important cellular functions such as bioenergetics, mitophagy, apoptosis, and calcium signaling are regulated by MAMs, which are thought to be closely related to ischemic reperfusion injury (IRI). However, there exists a gap in systematic proteomic research addressing the relationship between these cellular processes. Methods A 4D label free mass spectrometry-based proteomic analysis of mitochondria associated membranes (MAMs) from the human renal proximal tubular epithelial cell line (HK-2 cells) was conducted under both normal (N) and hypoxia/reperfusion (HR) conditions. Subsequent differential proteins analysis aimed to characterize disease-relevant signaling molecules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was applied to total proteins and differentially expressed proteins, encompassing Biological Process (BP), Cell Component (CC), Molecular Function (MF), and KEGG pathways. Further, Protein–Protein Interaction Network (PPI) exploration was carried out, leading to the identification of hub genes from differentially expressed proteins. Notably, Mitofusion 2 (MFN2) and BCL2/Adenovirus E1B 19-kDa interacting protein 3(BNIP3) were identified and subsequently validated both in vitro and in vivo. Finally, the impact of MFN2 on MAMs during hypoxia/reoxygenation was explored through regulation of gene expression. Subsequently, a comparative proteomics analysis was conducted between OE-MFN2 and normal HK-2 cells, providing further insights into the underlying mechanisms. Results A total of 4489 proteins were identified, with 3531 successfully quantified. GO/KEGG analysis revealed that MAM proteins were primarily associated with mitochondrial function and energy metabolism. Differential analysis between the two groups showed that 688 proteins in HR HK-2 cells exhibited significant changes in expression level with P-value 1.5 or HR/N

Details

Language :
English
ISSN :
14795876
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Translational Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.99a8d4f698645e3907246739245620e
Document Type :
article
Full Text :
https://doi.org/10.1186/s12967-024-05021-0