Back to Search Start Over

Quantum dot-based thermometry uncovers decreased myosin efficiency in an experimental intensive care unit model

Authors :
Meishan Li
Nicola Cacciani
Fernando Ribeiro
Yvette Hedström
Bhanu P. Jena
Lars Larsson
Source :
Frontiers in Physiology, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Critical illness myopathy (CIM) detrimentally affects muscle function in ICU patients, with a dramatic loss of muscle mass and function where the loss in specific force exceeds the loss in muscle mass (maximum force normalized to muscle cross-sectional area). The preferential loss of the molecular motor protein myosin, representing the hallmark of CIM, exhibiting a significant negative impact on the specific force generation by the muscle. Interestingly however, the preferential myosin loss is a relatively late event, and a specific loss in force generation capacity, is observed prior to the myosin loss. In the current study, employing an optimized cadmium telluride quantum dots (QD) mediated-thermometry approach to assess the efficiency of the myosin, we were able to determine the loss in specific force generated by the muscle, prior to the preferential loss of myosin. Reduction in QD fluorescent intensity correlates with greater heat loss, reflecting inefficient myosin function (less mechanical work performed and more heat loss on ATP hydrolysis by myosin). A significant decrease in myosin efficiency was observed in rats subjected to the ICU condition (immobilization and mechanical ventilation) for 5 days using an established experimental ICU model not limited by early mortality. Thus, qualitative myosin changes preceding quantitative myosin loss offer a mechanism underlying the early loss in specific force generation capacity associated with CIM and opens a venue for future CIM intervention strategies.

Details

Language :
English
ISSN :
1664042X
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
edsdoj.9984c7f9817a41b3ad3e77669060310e
Document Type :
article
Full Text :
https://doi.org/10.3389/fphys.2024.1485249