Back to Search
Start Over
Microscale Lateral Perovskite Light Emitting Diode Realized by Self-Doping Phenomenon
- Source :
- Sensors, Vol 24, Iss 14, p 4454 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- High-definition near-eye display technology has extremely close sight distance, placing a higher demand on the size, performance, and array of light-emitting pixel devices. Based on the excellent photoelectric performance of metal halide perovskite materials, perovskite light-emitting diodes (PeLEDs) have high photoelectric conversion efficiency, adjustable emission spectra, and excellent charge transfer characteristics, demonstrating great prospects as next-generation light sources. Despite their potential, the solubility of perovskite in photoresist presents a hurdle for conventional micro/nano processing techniques, resulting in device sizes typically exceeding 50 μm. This limitation impedes the further downsizing of perovskite-based components. Herein, we propose a plane-structured PeLED device that can achieve microscale light-emitting diodes with a single pixel device size < 2 μm and a luminescence lifetime of approximately 3 s. This is accomplished by fabricating a patterned substrate and regulating ion distribution in the perovskite through self-doping effects to form a PN junction. This breakthrough overcomes the technical challenge of perovskite–photoresist incompatibility, which has hindered the development of perovskite materials in micro/nano optoelectronic devices. The strides made in this study open up promising avenues for the advancement of PeLEDs within the realm of micro/nano optoelectronic devices.
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 24
- Issue :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Sensors
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9974d28f8fb1443bb2efea6874ce88cf
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/s24144454