Back to Search Start Over

Advanced feature selection to study the internationalization strategy of enterprises

Authors :
Álvaro Herrero
Alfredo Jiménez
Roberto Alcalde
Source :
PeerJ Computer Science, Vol 7, p e403 (2021)
Publication Year :
2021
Publisher :
PeerJ Inc., 2021.

Abstract

Firms face an increasingly complex economic and financial environment in which the access to international networks and markets is crucial. To be successful, companies need to understand the role of internationalization determinants such as bilateral psychic distance, experience, etc. Cutting-edge feature selection methods are applied in the present paper and compared to previous results to gain deep knowledge about strategies for Foreign Direct Investment. More precisely, evolutionary feature selection, addressed from the wrapper approach, is applied with two different classifiers as the fitness function: Bagged Trees and Extreme Learning Machines. The proposed intelligent system is validated when applied to real-life data from Spanish Multinational Enterprises (MNEs). These data were extracted from databases belonging to the Spanish Ministry of Industry, Tourism, and Trade. As a result, interesting conclusions are derived about the key features driving to the internationalization of the companies under study. This is the first time that such outcomes are obtained by an intelligent system on internationalization data.

Details

Language :
English
ISSN :
23765992
Volume :
7
Database :
Directory of Open Access Journals
Journal :
PeerJ Computer Science
Publication Type :
Academic Journal
Accession number :
edsdoj.996ee4d217e547609f0bd8aae8c1033b
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj-cs.403