Back to Search Start Over

Recovery of Chlorosilane Residual Liquid to Prepare Nano-Silica via the Reverse Micro-Emulsion Process

Authors :
Jixiang Cai
Youwen Li
Lianghuan Wei
Jiangpeng Xue
Ning Lin
Xianghao Zha
Guodong Fang
Source :
Materials, Vol 16, Iss 21, p 6912 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

In this paper, nano-silica particles were prepared from chlorosilane residue liquid using an inverse micro-emulsions system formed from octylphenyl polyoxyethylene ether (TX-100)/n-hexanol/cyclohexane/ammonia. The influence of different reaction conditions on the morphology, particle size, and dispersion of nano-silica particles was investigated via single-factor analysis. When the concentration of chlorosilane residue liquid (0.08 mol/L), hydrophile-lipophilic-balance (HLB) values (10.50), and the concentration of ammonia (0.58 mol/L) were under suitable conditions, the nano-silica particles had a more uniform morphology, smaller particle size, and better dispersion, while the size of the nano-silica particles gradually increased with the increase in the molar ratio of water to surfactant (ω). The prepared nano-silica was characterized through XRD, FT-IR, N2 adsorption/desorption experiments, and TG-DSC analysis. The results showed that the prepared nano-silica was amorphous mesoporous silica, and that the BET specific surface area was 850.5 m2/g. It also had good thermal stability. When the temperature exceeded 1140 °C, the nano-silica underwent a phase transition from an amorphous form to crystalline. This method not only promoted the sustainable development of the polysilicon industry, it also provided new ideas for the protection of the ecological environment, the preparation of environmental functional materials, and the recycling of resources and energy.

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
21
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.993deb6f1bdd4b8098d284c4492f562f
Document Type :
article
Full Text :
https://doi.org/10.3390/ma16216912