Back to Search Start Over

Gene‐based mapping of trehalose biosynthetic pathway genes reveals association with source‐ and sink‐related yield traits in a spring wheat panel

Authors :
Danilo H. Lyra
Cara A. Griffiths
Amy Watson
Ryan Joynson
Gemma Molero
Alina‐Andrada Igna
Keywan Hassani‐Pak
Matthew P. Reynolds
Anthony Hall
Matthew J. Paul
Source :
Food and Energy Security, Vol 10, Iss 3, Pp n/a-n/a (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract Trehalose 6‐phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source‐ and sink‐related traits remain largely unknown. We used enrichment capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield‐related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain‐related traits. Three TPS1 homologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain‐related traits. Gene‐based prediction improved predictive ability for grain weight when gene effects were combined with the whole‐genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes.

Details

Language :
English
ISSN :
20483694
Volume :
10
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Food and Energy Security
Publication Type :
Academic Journal
Accession number :
edsdoj.99350ea7fe444804ba3284f91ccc38bd
Document Type :
article
Full Text :
https://doi.org/10.1002/fes3.292