Back to Search
Start Over
Biodegradable Nanofibrillated Cellulose/Poly-(butylene adipate-co-terephthalate) Composite Film with Enhanced Barrier Properties for Food Packaging
- Source :
- Molecules, Vol 28, Iss 6, p 2689 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Biodegradable composites consisting of Poly-(butylene adipate-co-terephthalate) (PBAT), thermoplastic starch, hydrophobically modified nanofibrillated cellulose (HMNC), and green surfactant (sucrose fatty acid ester) were prepared via the melt-mixing and film-blowing process (PBAT-HMNC). The composites were characterized using the Fourier transform infrared spectroscope (FT-IR), scanning electron microscope (SEM), and thermogravimetric analyzer (TGA). The mechanical and barrier properties were systematically studied. The results indicated that PBAT-HMNC composites exhibited excellent mechanical and barrier properties. The tensile strength reached the maximum value (over 13 MPa) when the HMNC content was 0.6% and the thermal decomposition temperature decreased by 1 to 2 °C. The lowest values of the water vapor transmission rate (WVTR) and the oxygen transmission rate (OTR) were obtained from the composite with 0.6 wt% HMNC, prepared via the film-bowing process with the values of 389 g/(m2·day) and 782 cc/(m2·day), which decreased by 51.3% and 42.1%, respectively. The Agaricus mushrooms still had a commodity value after 11 days of preservation using the film with 0.6 wt% HMNC. PBAT-HMNC composites have been proven to be promising nanocomposite materials for packaging.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 28
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.99066d84d547493ca00ca561fca3644a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules28062689