Back to Search Start Over

Automated recognition of objects and types of forceps in surgical images using deep learning

Authors :
Yoshiko Bamba
Shimpei Ogawa
Michio Itabashi
Shingo Kameoka
Takahiro Okamoto
Masakazu Yamamoto
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Analysis of operative data with convolutional neural networks (CNNs) is expected to improve the knowledge and professional skills of surgeons. Identification of objects in videos recorded during surgery can be used for surgical skill assessment and surgical navigation. The objectives of this study were to recognize objects and types of forceps in surgical videos acquired during colorectal surgeries and evaluate detection accuracy. Images (n = 1818) were extracted from 11 surgical videos for model training, and another 500 images were extracted from 6 additional videos for validation. The following 5 types of forceps were selected for annotation: ultrasonic scalpel, grasping, clip, angled (Maryland and right-angled), and spatula. IBM Visual Insights software was used, which incorporates the most popular open-source deep-learning CNN frameworks. In total, 1039/1062 (97.8%) forceps were correctly identified among 500 test images. Calculated recall and precision values were as follows: grasping forceps, 98.1% and 98.0%; ultrasonic scalpel, 99.4% and 93.9%; clip forceps, 96.2% and 92.7%; angled forceps, 94.9% and 100%; and spatula forceps, 98.1% and 94.5%, respectively. Forceps recognition can be achieved with high accuracy using deep-learning models, providing the opportunity to evaluate how forceps are used in various operations.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.990396cdcb9f4a97abaae6b80d4de589
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-01911-1