Back to Search Start Over

Effect of Myrtenol and Its Synergistic Interactions with Antimicrobial Drugs in the Inhibition of Single and Mixed Biofilms of Candida auris and Klebsiella pneumoniae

Authors :
Angela Maione
Alessandra La Pietra
Elisabetta de Alteriis
Aldo Mileo
Maria De Falco
Marco Guida
Emilia Galdiero
Source :
Microorganisms, Vol 10, Iss 9, p 1773 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The increased incidence of mixed infections requires that the scientific community develop novel antimicrobial molecules. Essential oils and their bioactive pure compounds have been found to exhibit a wide range of remarkable biological activities and are attracting more and more attention. Therefore, the aim of this study was to evaluate myrtenol (MYR), one of the constituents commonly found in some essential oils, for its potential to inhibit biofilms alone and in combination with antimicrobial drugs against Candida auris/Klebsiella pneumoniae single and mixed biofilms. The antimicrobial activity of MYR was evaluated by determining bactericidal/fungicidal concentrations (MIC), and biofilm formation at sub-MICs was analyzed in a 96-well microtiter plate by crystal violet, XTT reduction assay, and CFU counts. The synergistic interaction between MYR and antimicrobial drugs was evaluated by the checkerboard method. The study found that MYR exhibited antimicrobial activity at high concentrations while showing efficient antibiofilm activity against single and dual biofilms. To understand the underlying mechanism by which MYR promotes single/mixed-species biofilm inhibition, we observed a significant downregulation in the expression of mrkA, FKS1, ERG11, and ALS5 genes, which are associated with bacterial motility, adhesion, and biofilm formation as well as increased ROS production, which can play an important role in the inhibition of biofilm formation. In addition, the checkerboard microdilution assay showed that MYR was strongly synergistic with both caspofungin (CAS) and meropenem (MEM) in inhibiting the growth of Candida auris/Klebsiella pneumoniae-mixed biofilms. Furthermore, the tested concentrations showed an absence of toxicity for both mammalian cells in the in vitro and in vivo Galleria mellonella models. Thus, MYR could be considered as a potential agent for the management of polymicrobial biofilms.

Details

Language :
English
ISSN :
20762607
Volume :
10
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Microorganisms
Publication Type :
Academic Journal
Accession number :
edsdoj.98f705fbbfa84c7db1a39f166a867e87
Document Type :
article
Full Text :
https://doi.org/10.3390/microorganisms10091773