Back to Search Start Over

Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan

Authors :
Yuichi Otsuka
Atsuki Shinbori
Takuya Tsugawa
Michi Nishioka
Source :
Earth, Planets and Space, Vol 73, Iss 1, Pp 1-11 (2021)
Publication Year :
2021
Publisher :
SpringerOpen, 2021.

Abstract

Abstract In order to reveal solar activity dependence of the medium-scale traveling ionospheric disturbances (MSTIDs) at midlatitudes, total electron content (TEC) data obtained from a Global Positioning System (GPS) receiver network in Japan during 22 years from 1998 to 2019 were analyzed. We have calculated the detrended TEC by subtracting the 1-h running average from the original TEC data for each satellite and receiver pair, and made two-dimensional TEC maps of the detrended TEC with a spatial resolution of 0.15° × 0.15° in longitude and latitude. We have investigated MSTID activity, defined as $$\delta I/\overline{I}$$ δ I / I ¯ , where $$\delta I$$ δ I and $$\overline{I}$$ I ¯ are standard deviation of the detrended TEC and the average vertical TEC within the area of 133.0°–137.0° E and 33.0°–37.0° N for 1 h, respectively. From each 2-h time series of the detrended TEC data within the same area as the MSTID activity, auto-correlation functions (ACFs) of the detrended TEC were calculated to estimate the horizontal propagation velocity and direction of the MSTIDs. Statistical results of the MSTID activity and propagation direction of MSTIDs were consistent with previous studies and support the idea that daytime MSTIDs could be caused by atmospheric gravity waves, and that nighttime MSTIDs were caused by electro-dynamical forces, such as the Perkins instability. From the current long-term observations, we have found that the nighttime MSTID activity and occurrence rate increased with decreasing solar activity. For the daytime MSTID, the occurrence rate increased with decreasing solar activity, whereas the MSTID activity did not show distinct solar activity dependence. These results suggest that the secondary gravity waves generated by dissipation of the primary gravity waves propagating from below increase under low solar activity conditions. The mean horizontal phase velocity of the MSTIDs during nighttime did not show a distinct solar activity dependence, whereas that during daytime showed an anticorrelation with solar activity. The horizontal phase velocity of the daytime MSTIDs was widely distributed from 40 to 180 m/s under high solar activity conditions, whereas it ranged between 80 and 200 m/s, with a maximum occurrence at 130 m/s under low solar activity conditions, suggesting that gravity waves with low phase velocity could be dissipated by high viscosity in the thermosphere under low solar activity conditions.

Details

Language :
English
ISSN :
18805981
Volume :
73
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Earth, Planets and Space
Publication Type :
Academic Journal
Accession number :
edsdoj.98e6aa2f6cc14b1f9419beecfe359960
Document Type :
article
Full Text :
https://doi.org/10.1186/s40623-020-01353-5