Back to Search Start Over

Effects of transition metal carbide dispersoids on helium bubble formation in dispersion-strengthened tungsten

Authors :
Ashrakat Saefan
Xingyu Liu
Eric Lang
Levko Higgins
Yongqiang Wang
Osman El-Atwani
Jean Paul Allain
Xing Wang
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-10 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The formation of helium bubbles and subsequent property degradation poses a significant challenge to tungsten as a plasma-facing material in future long-pulse plasma-burning fusion reactors. In this study, we investigated helium bubble formation in dispersion-strengthened tungsten doped with transition metal carbides, including TaC, ZrC, and TiC. Of the three dispersoids, TaC exhibited the highest resistance to helium bubble formation, possibly due to the low vacancy mobility in the Group VB metal carbide and oxide phases. Under identical irradiation conditions, large helium bubbles formed at grain boundaries in tungsten, while no bubbles were observed at the interfaces between the carbide dispersoid and tungsten matrix. Moreover, our results showed the interfaces could suppress helium bubble formation in the nearby tungsten matrix, suggesting that the interfaces are more effective in trapping helium as tiny clusters. Our research provided new insights into optimizing the microstructure of dispersion-strengthened tungsten alloys to enhance their performance.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.987c12b60c2c4fc893219b068c4cedc2
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-40421-0