Back to Search Start Over

A multi-institutional meningioma MRI dataset for automated multi-sequence image segmentation

Authors :
Dominic LaBella
Omaditya Khanna
Shan McBurney-Lin
Ryan Mclean
Pierre Nedelec
Arif S. Rashid
Nourel hoda Tahon
Talissa Altes
Ujjwal Baid
Radhika Bhalerao
Yaseen Dhemesh
Scott Floyd
Devon Godfrey
Fathi Hilal
Anastasia Janas
Anahita Kazerooni
Collin Kent
John Kirkpatrick
Florian Kofler
Kevin Leu
Nazanin Maleki
Bjoern Menze
Maxence Pajot
Zachary J. Reitman
Jeffrey D. Rudie
Rachit Saluja
Yury Velichko
Chunhao Wang
Pranav I. Warman
Nico Sollmann
David Diffley
Khanak K. Nandolia
Daniel I Warren
Ali Hussain
John Pascal Fehringer
Yulia Bronstein
Lisa Deptula
Evan G. Stein
Mahsa Taherzadeh
Eduardo Portela de Oliveira
Aoife Haughey
Marinos Kontzialis
Luca Saba
Benjamin Turner
Melanie M. T. Brüßeler
Shehbaz Ansari
Athanasios Gkampenis
David Maximilian Weiss
Aya Mansour
Islam H. Shawali
Nikolay Yordanov
Joel M. Stein
Roula Hourani
Mohammed Yahya Moshebah
Ahmed Magdy Abouelatta
Tanvir Rizvi
Klara Willms
Dann C. Martin
Abdullah Okar
Gennaro D’Anna
Ahmed Taha
Yasaman Sharifi
Shahriar Faghani
Dominic Kite
Marco Pinho
Muhammad Ammar Haider
Michelle Alonso-Basanta
Javier Villanueva-Meyer
Andreas M. Rauschecker
Ayman Nada
Mariam Aboian
Adam Flanders
Spyridon Bakas
Evan Calabrese
Source :
Scientific Data, Vol 11, Iss 1, Pp 1-8 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available. Here we present the BraTS Pre-operative Meningioma Dataset, as the largest multi-institutional expert annotated multilabel meningioma multi-sequence MR image dataset to date. This dataset includes 1,141 multi-sequence MR images from six sites, each with four structural MRI sequences (T2-, T2/FLAIR-, pre-contrast T1-, and post-contrast T1-weighted) accompanied by expert manually refined segmentations of three distinct meningioma sub-compartments: enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Basic demographic data are provided including age at time of initial imaging, sex, and CNS WHO grade. The goal of releasing this dataset is to facilitate the development of automated computational methods for meningioma segmentation and expedite their incorporation into clinical practice, ultimately targeting improvement in the care of meningioma patients.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20524463
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Data
Publication Type :
Academic Journal
Accession number :
edsdoj.98787bda3824eadba3e679915417559
Document Type :
article
Full Text :
https://doi.org/10.1038/s41597-024-03350-9