Back to Search Start Over

Co-Remediation of Acid Mine Drainage and Industrial Effluent Using Passive Permeable Reactive Barrier Pre-Treatment and Active Co-Bioremediation

Authors :
Sandisiwe Khanyisa Thisani
Daramy Vandi Von Kallon
Patrick Byrne
Source :
Minerals, Vol 12, Iss 5, p 565 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

This study evaluated the co-remediation performance of an active–passive process comprised of passive permeable reactive barrier acid mine drainage (AMD) pre-treatment and active anaerobic digestion treatment of AMD with effluent as a carbon source. The bioreactor was operated for 24 consecutive days with peak chemical oxygen demand (COD) and sulphate loading rates of 6.6 kg COD/m3/day and 0.89 kg SO42−/m3/day, respectively. The AMD pre-treatment was capable of removing 99%, 94% and 42% of iron (Fe), potassium (K), and aluminium (Al) concentrations, respectively. The biological treatment process was capable of removing 89.7% and 99% of COD and sulphate concentrations, respectively. The treated wastewater copper (Cu), sulphate (SO42−), and pH were within the effluent discharge limits and the potable water standards of South Africa. Fe, Al, manganese (Mn), nickel (Ni), and zinc (Zn) concentrations in the treated wastewater were marginally higher than the discharge and potable water limit with all concentrations exceeding the limit by less than 0.65 mg/L. The remediation performance of the process was found to be effective with limited operational inputs, which can enable low cost co-remediation.

Details

Language :
English
ISSN :
2075163X
Volume :
12
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Minerals
Publication Type :
Academic Journal
Accession number :
edsdoj.9836ce3ee4a3405488d49dec460c821b
Document Type :
article
Full Text :
https://doi.org/10.3390/min12050565