Back to Search Start Over

Natively unstructured loops differ from other loops.

Authors :
Avner Schlessinger
Jinfeng Liu
Burkhard Rost
Source :
PLoS Computational Biology, Vol 3, Iss 7, p e140 (2007)
Publication Year :
2007
Publisher :
Public Library of Science (PLoS), 2007.

Abstract

Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long unstructured loops are a major part of unstructured regions in molecular networks.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
1553734X and 15537358
Volume :
3
Issue :
7
Database :
Directory of Open Access Journals
Journal :
PLoS Computational Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.982ba823985744e7b24e9ff66af22bd6
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pcbi.0030140