Back to Search Start Over

Evaluating the mechanical and environmental impact of PEF plastic waste incorporated with graphene nano-platelets in concrete

Authors :
Muhammad Basit Khan
Taoufik Najeh
Hamad Almujibah
Mohammad Ghiath Al Zouabi
Omrane Benjeddou
Source :
Frontiers in Materials, Vol 11 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

There has been a significant surge in the yearly use of plastics, leading to a notable rise in plastic waste generation. Consequently, the recycling of plastic garbage has emerged as a prominent concern around the world. This research explores the feasibility of using polyethylene furanoate (PEF) plastic waste as a substitute for coarse aggregate (CA) in concrete. Graphene nano-platelets (GNPs) were added to the concrete mix in different quantities to improve its structural reliability. The research study used an experimental research design in conducting its investigation. PEF waste plastic was added in concrete in varying proportions of 0%, 5%, 15%, 20%, and 25% as a supplementary material to gravel, and GNPs were added in different percentages of 0%, 0.03%, 0.05%, 0.08%, and 0.1% by weight of cement. Mechanical tests were conducted, which includes compressive strength (CS), split tensile strength (STS), flexural strength (FS), modulus of elasticity (MoE), and ultrasonic pulse velocity (UPV), and the environmental assessment of concrete was done by assessing carbon in concrete and concrete’s eco efficiency (ESE). It was found that 5% addition of PEF as the substitute to CA and 0.1% of GNPs gives the optimum strength, enhancing CS, STS, and FS by 9.10%, 18.18%, and 4.45%, respectively. Response surface technique (RSM) models were created to provide mathematical equations for predicting the predicted outcomes. All models were optimized using a multi-objective optimization approach and then validated.

Details

Language :
English
ISSN :
22968016
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.97b7de13106f407cbd78a297270e8153
Document Type :
article
Full Text :
https://doi.org/10.3389/fmats.2024.1424177