Back to Search Start Over

On the onset of breathing mode in Hall thrusters and the role of electron mobility fluctuations

Authors :
L. Leporini
V. Giannetti
M. M. Saravia
F. Califano
S. Camarri
T. Andreussi
Source :
Frontiers in Physics, Vol 10 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Breathing mode is an ionization instability which is observed ubiquitously in the operation of Hall thrusters. It is recognized as a relatively low frequency (10–30 kHz) longitudinal oscillation of the discharge current and the plasma parameters. Although breathing instability is widely studied in the literature, the conditions for its origin are not fully understood. In this work we investigate the mechanisms responsible for the origin of the breathing mode in Hall thrusters by using a numerical model, allowing us to highlight the importance of electron mobility fluctuations for the onset and self-sustenance of the instability. Our one-dimensional, fully fluid model of the thruster channel is calibrated against the measured discharge current signal for a 5 kW-class Hall thruster operating in a condition where breathing mode is fully developed. The corresponding steady, unstable configuration (base state) is numerically computed by applying the Selective Frequency Damping (SFD) method. Then, a series of numerical tests is performed to show the existence of a feedback loop involving fluctuations around the base state of the neutral density, electron mobility, and electric field. We show that oscillations of the electron mobility are mainly caused by variations of the neutral density and are in phase with them; this, in turn, induces oscillations of the electric field, which are in phase opposition. The electric field acts simultaneously on the electron temperature and on the ion dynamics, promoting the depletion and replenishment of neutrals in the chamber.

Details

Language :
English
ISSN :
2296424X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.97978101cd14253b1c116ba1e8be579
Document Type :
article
Full Text :
https://doi.org/10.3389/fphy.2022.951960