Back to Search Start Over

Proteomic Sequencing of Stellate Ganglions in Rabbits With Myocardial Infarction

Authors :
Lijun Cheng
Xinghua Wang
Hongda Chou
Tong Liu
Huaying Fu
Guangping Li
Source :
Frontiers in Physiology, Vol 12 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

The stellate ganglion (SG) of the autonomic nervous system plays important role in cardiovascular diseases (CDs). Myocardial infarction (MI) is associated with sustained increasing cardiac sympathetic nerve activity. Expressions and functions of proteins in SG tissue after MI are remaining unclear. This study is to explore the expression characteristics of proteins in SGs associated with MI. Japanese big-ear white rabbits (n = 22) were randomly assigned to the control group and MI group. The MI model was established by left anterior descending coronary artery ligation and confirmed by serum myocardial enzymes increasing 2,3,5-triphenyltetrazolium (TTC) staining and echocardiography. The expressions of proteins in rabbit SGs after MI were detected using tandem mass tags (TMT) quantitative proteomic sequencing. There were 3,043 credible proteins were predicted in rabbit SG tissues and 383 differentially expressed proteins (DEPs) including 143 upregulated and 240 downregulated proteins. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEPs involved in adrenergic signaling in cardiomyocytes, positive regulation of ERK1 and ERK2 cascade, and other biological processes. Three kinds of proteins directly correlated to CDs were selected to be validated by the subsequent western blot experiment. This study first identified the characterization of proteins in rabbit SG after MI, which laid a solid foundation for revealing the mechanism of roles of SG on the MI process.

Details

Language :
English
ISSN :
1664042X
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
edsdoj.978679b73ecd407091c8f3924f8491aa
Document Type :
article
Full Text :
https://doi.org/10.3389/fphys.2021.687424