Back to Search
Start Over
Adaptive Wireless Power Transfer Beam Scheduling for Non-Static IoT Devices Using Deep Reinforcement Learning
- Source :
- IEEE Access, Vol 8, Pp 206659-206673 (2020)
- Publication Year :
- 2020
- Publisher :
- IEEE, 2020.
-
Abstract
- In this article, we study wireless power transfer (WPT) beam scheduling for a system which consists of IoT devices and a power beacon (PB) using switched beamforming. In such a system, the IoT devices have a non-static behavior (e.g., their location and power requests keep changing) in general, which conventional WPT beam scheduling algorithms are not capable of adaptively dealing with. To address the non-static behavior, we propose a procedure of deep neural network (DNN)-based WPT beam scheduling. In the procedure, the power-deficient IoT devices transmit a common pilot signal simultaneously. Then, the PB effectively provides power to them with a DNN-based WPT beam scheduling policy. In the DNN-based policy, an estimation of the non-static behavior from the received pilot signals and an adaptive beam generation considering the estimated non-static behavior are integrated thanks to the powerful representational capability of DNNs. To allow the DNN-based policy to learn the optimal policy, we propose a Deep WPT Beam scheduling policy Gradient (DWBG) algorithm using deep reinforcement learning. Through the simulation, we show that DWBG achieves a close performance to the optimal policy. This demonstrates that our algorithm can be applied for practical WPT IoT systems with non-static IoT devices.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9777204bb40348549b4a38b17969f019
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2020.3037323