Back to Search Start Over

Engineering Saccharomyces cerevisiae for the production and secretion of Affibody molecules

Authors :
Veronica Gast
Anna Sandegren
Finn Dunås
Siri Ekblad
Rezan Güler
Staffan Thorén
Marta Tous Mohedano
Mikael Molin
Martin K. M. Engqvist
Verena Siewers
Source :
Microbial Cell Factories, Vol 21, Iss 1, Pp 1-15 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background Affibody molecules are synthetic peptides with a variety of therapeutic and diagnostic applications. To date, Affibody molecules have mainly been produced by the bacterial production host Escherichia coli. There is an interest in exploring alternative production hosts to identify potential improvements in terms of yield, ease of production and purification advantages. In this study, we evaluated the feasibility of Saccharomyces cerevisiae as a production chassis for this group of proteins. Results We examined the production of three different Affibody molecules in S. cerevisiae and found that these Affibody molecules were partially degraded. An albumin-binding domain, which may be attached to the Affibody molecules to increase their half-life, was identified to be a substrate for several S. cerevisiae proteases. We tested the removal of three vacuolar proteases, proteinase A, proteinase B and carboxypeptidase Y. Removal of one of these, proteinase A, resulted in intact secretion of one of the targeted Affibody molecules. Removal of either or both of the two additional proteases, carboxypeptidase Y and proteinase B, resulted in intact secretion of the two remaining Affibody molecules. The produced Affibody molecules were verified to bind their target, human HER3, as potently as the corresponding molecules produced in E. coli in an in vitro surface-plasmon resonance binding assay. Finally, we performed a fed-batch fermentation with one of the engineered protease-deficient S. cerevisiae strains and achieved a protein titer of 530 mg Affibody molecule/L. Conclusion This study shows that engineered S. cerevisiae has a great potential as a production host for recombinant Affibody molecules, reaching a high titer, and for proteins where endotoxin removal could be challenging, the use of S. cerevisiae obviates the need for endotoxin removal from protein produced in E. coli.

Details

Language :
English
ISSN :
14752859
Volume :
21
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microbial Cell Factories
Publication Type :
Academic Journal
Accession number :
edsdoj.97741660c2d64e549d4f8423f1d14931
Document Type :
article
Full Text :
https://doi.org/10.1186/s12934-022-01761-0