Back to Search
Start Over
Multivariate Multiscale Complexity Analysis of Self-Reproducing Chaotic Systems
- Source :
- Entropy, Vol 20, Iss 8, p 556 (2018)
- Publication Year :
- 2018
- Publisher :
- MDPI AG, 2018.
-
Abstract
- Designing a chaotic system with infinitely many attractors is a hot topic. In this paper, multiscale multivariate permutation entropy (MMPE) and multiscale multivariate Lempel–Ziv complexity (MMLZC) are employed to analyze the complexity of those self-reproducing chaotic systems with one-directional and two-directional infinitely many chaotic attractors. The analysis results show that complexity of this class of chaotic systems is determined by the initial conditions. Meanwhile, the values of MMPE are independent of the scale factor, which is different from the algorithm of MMLZC. The analysis proposed here is helpful as a reference for the application of the self-reproducing systems.
Details
- Language :
- English
- ISSN :
- 10994300
- Volume :
- 20
- Issue :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- Entropy
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.96f51133dfdb4d99bcd1401458bddb7a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/e20080556