Back to Search Start Over

The DNA repair pathway as a therapeutic target to synergize with trastuzumab deruxtecan in HER2-targeted antibody–drug conjugate–resistant HER2-overexpressing breast cancer

Authors :
Jangsoon Lee
Kumiko Kida
Jiwon Koh
Huey Liu
Ganiraju C. Manyam
Young Jin Gi
Dileep R. Rampa
Asha S. Multani
Jing Wang
Gitanjali Jayachandran
Dae-Won Lee
James M. Reuben
Aysegul Sahin
Lei Huo
Debu Tripathy
Seock-Ah Im
Naoto T. Ueno
Source :
Journal of Experimental & Clinical Cancer Research, Vol 43, Iss 1, Pp 1-20 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Anti-HER2 therapies, including the HER2 antibody–drug conjugates (ADCs) trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), have led to improved survival outcomes in patients with HER2-overexpressing (HER2+) metastatic breast cancer. However, intrinsic or acquired resistance to anti-HER2–based therapies remains a clinical challenge in these patients, as there is no standard of care following disease progression. The purpose of this study was to elucidate the mechanisms of resistance to T-DM1 and T-DXd in HER2+ BC patients and preclinical models and identify targets whose inhibition enhances the antitumor activity of T-DXd in HER2-directed ADC-resistant HER2+ breast cancer in vitro and in vivo. Methods Targeted DNA and whole transcriptome sequencing were performed in breast cancer patient tissue samples to investigate genetic aberrations that arose after anti-HER2 therapy. We generated T-DM1 and T-DXd–resistant HER2+ breast cancer cell lines. To elucidate their resistance mechanisms and to identify potential synergistic kinase targets for enhancing the efficacy of T-DXd, we used fluorescence in situ hybridization, droplet digital PCR, Western blotting, whole-genome sequencing, cDNA microarray, and synthetic lethal kinome RNA interference screening. In addition, cell viability, colony formation, and xenograft assays were used to determine the synergistic antitumor effect of T-DXd combinations. Results We found reduced HER2 expression in patients and amplified DNA repair–related genes in patients after anti-HER2 therapy. Reduced ERBB2 gene amplification in HER2-directed ADC–resistant HER2+ breast cancer cell lines was through DNA damage and epigenetic mechanisms. In HER2-directed ADC–resistant HER2+ breast cancer cell lines, our non-biased RNA interference screening identified the DNA repair pathway as a potential target within the canonical pathways to enhance the efficacy of T-DXd. We validated that the combination of T-DXd with ataxia telangiectasia and Rad3-related inhibitor, elimusertib, led to significant breast cancer cell death in vitro (P

Details

Language :
English
ISSN :
17569966
Volume :
43
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Experimental & Clinical Cancer Research
Publication Type :
Academic Journal
Accession number :
edsdoj.96dec9fe852b4c2f9909c30d5560016b
Document Type :
article
Full Text :
https://doi.org/10.1186/s13046-024-03143-3