Back to Search Start Over

Cell-inspired design of cascade catalysis system by 3D spatially separated active sites

Authors :
Qiuping Wang
Kui Chen
Hui Jiang
Cai Chen
Can Xiong
Min Chen
Jie Xu
Xiaoping Gao
Suowen Xu
Huang Zhou
Yuen Wu
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-10 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Cells possess isolated compartments that spatially confine different enzymes, enabling high-efficiency enzymatic cascade reactions. Herein, we report a cell-inspired design of biomimetic cascade catalysis system by immobilizing Fe single atoms and Au nanoparticles on the inner and outer layers of three-dimensional nanocapsules, respectively. The different metal sites catalyze independently and work synergistically to enable engineered and cascade glucose detection. The biomimetic catalysis system demonstrates ~ 9.8- and 2-fold cascade activity enhancement than conventional mixing and coplanar construction systems, respectively. Furthermore, the biomimetic catalysis system is successfully demonstrated for the colorimetric glucose detection with high catalytic activity and selectivity. Also, the proposed gel-based sensor is integrated with smartphone to enable real-time and visual determination of glucose. More importantly, the gel-based sensor exhibits a high correlation with a commercial glucometer in real samples detection. These findings provide a strategy to design an efficient biomimetic catalysis system for applications in bioassays and nanobiomedicines.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.96b94e4934db429ea2db78a6cc4ff415
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-41002-5