Back to Search Start Over

Preparation, characterization, and evaluation of amphotericin B-loaded MPEG-PCL-g-PEI micelles for local treatment of oral Candida albicans

Authors :
Zhou L
Zhang P
Chen Z
Cai S
Jing T
Fan H
Mo F
Zhang J
Lin R
Source :
International Journal of Nanomedicine, Vol Volume 12, Pp 4269-4283 (2017)
Publication Year :
2017
Publisher :
Dove Medical Press, 2017.

Abstract

Li Zhou,1,* Peipei Zhang,1,* Zhuo Chen,1 Shaona Cai,2 Ting Jing,2 Huihui Fan,2 Fei Mo,2 Jiye Zhang,2 Rong Lin1 1Department of Pharmacology, 2School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Fatal Candida albicans infections in the mucosal system can occur in association with immune-compromised diseases and dysbacteriosis. Currently, amphotericin B (AmB) is considered to be the most effective antibiotic in the treatment of C. albicans infections, but its clinical application is limited by side effects and poor bioavailability. In order to use AmB in the local treatment of oral C. albicans infections, AmB/MPEG-PCL-g-PEI (monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)-graft-polyethylenimine, MPP) micelles were prepared. A series of characterizations were performed. The micelles allowed a sustained in vitro release in both normal oral conditions (pH 6.8) and C. albicans infection conditions (pH 5.8). Then, buccal tablets containing freeze-dried powder of AmB/MPP micelles were produced by direct compression process and evaluated as regards to weight variation, hardness, and friability. In vitro drug release of the buccal tablets was measured in both the United States Pharmacopeia dissolution apparatus and the dissolution rate test apparatus, which was previously designed for simulating in vivo conditions of the oral cavity. The buccal tablets could sustainably release within 8 h and meet the antifungal requirements. Regarding safety assessment of AmB/MPP micelles, in vivo histopathological data showed no irritation toward buccal mucosa of the rats in both optical microscopy and ultrastructure observation of the tissues. MTT experiment proved that AmB/MPP micelles reduced the cytotoxicity of AmB. The micelles delivered through the gastrointestinal route were also found to be non-systemic toxicity by liquid chromatography-mass spectrometry analysis. Furthermore, the antifungal action of AmB/MPP micelles was evaluated. Although AmB/MPP had no obvious improvement as compared to AmB alone in the antifungal effect on planktonic C. albicans, the micelles significantly enhanced the antifungal activity against the biofilm state of C. albicans. Thus, it was concluded that AmB/MPP micelles represent a promising novel drug delivery system for the local treatment of oral C. albicans infections. Keywords: amphotericin B, micelle, Candida albicans, safety evaluation, buccal tablet, antifungal effect

Details

Language :
English
ISSN :
11782013
Volume :
ume 12
Database :
Directory of Open Access Journals
Journal :
International Journal of Nanomedicine
Publication Type :
Academic Journal
Accession number :
edsdoj.966ab8d3bc534fb7ab43ca414404067f
Document Type :
article