Back to Search Start Over

The simplicity of protein sequence-function relationships

Authors :
Yeonwoo Park
Brian P. H. Metzger
Joseph W. Thornton
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract How complex are the rules by which a protein’s sequence determines its function? High-order epistatic interactions among residues are thought to be pervasive, suggesting an idiosyncratic and unpredictable sequence-function relationship. But many prior studies may have overestimated epistasis, because they analyzed sequence-function relationships relative to a single reference sequence—which causes measurement noise and local idiosyncrasies to snowball into high-order epistasis—or they did not fully account for global nonlinearities. Here we present a reference-free method that jointly infers specific epistatic interactions and global nonlinearity using a bird’s-eye view of sequence space. This technique yields the simplest explanation of sequence-function relationships and is more robust than existing methods to measurement noise, missing data, and model misspecification. We reanalyze 20 experimental datasets and find that context-independent amino acid effects and pairwise interactions, along with a simple nonlinearity to account for limited dynamic range, explain a median of 96% of phenotypic variance and over 92% in every case. Only a tiny fraction of genotypes are strongly affected by higher-order epistasis. Sequence-function relationships are also sparse: a miniscule fraction of amino acids and interactions account for 90% of phenotypic variance. Sequence-function causality across these datasets is therefore simple, opening the way for tractable approaches to characterize proteins’ genetic architecture.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.964a2df1f4ba4080b5de69b6542ea0a9
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-51895-5