Back to Search Start Over

Containment of sulfate in leachate as gypsum (CaSO4ยท2H2O) mineral formation in bio-cemented sand via enzyme-induced carbonate precipitation

Authors :
Junghoon Kim
Daehyun Kim
Tae Sup Yun
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Enzymatically induced carbonate precipitation (EICP) using urea hydrolysis is a well-known bio-cementation process that not only promotes the precipitation of calcium carbonate (CaCO3) but can provide excess calcium cations for further reaction depending on the substrate constituents and reaction stage. This study presents the EICP recipe to contain sulfate ions in landfill leachate sufficiently using remaining calcium cations and a series of tests were conducted to validate its ability to retain sulfates. The reaction rate for 1 M CaCl2 and 1.5 M urea was identified by controlling the purified urease content and the curing time of the EICP process. The results showed that 0.3 g/L of purified urease produced 46% CaCO3 and reduced sulfate ions by 77% after 3 days of curing. The shear stiffness in EICP-treated sand was enhanced 13 times by CaCO3 precipitation followed by 1.12 times increment due to subsequent precipitation of gypsum (CaSO4·2H2O) crystals implying sulfate containment. A cost-efficient EICP treatment using soybean crude urease instead of lab-grade purified urease exhibited lower sulfate removal efficiency (i.e., 18%) with only nominal formation of gypsum in the EICP-treated sand. The addition of gypsum powder was effective in increasing sulfate removal by 40% when soybean crude urease was used for EICP.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.9603123e1d774204a10979b6cf608535
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-37772-z