Back to Search Start Over

Reduced adiposity attenuates FGF21 mediated metabolic improvements in the Siberian hamster

Authors :
Jo E. Lewis
Ricardo J. Samms
Scott Cooper
Jeni C. Luckett
Alan C. Perkins
Andrew C. Adams
Kostas Tsintzas
Francis J. P. Ebling
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract FGF21 exerts profound metabolic effects in Siberian hamsters exposed to long day (LD) photoperiods that increase appetite and adiposity, however these effects are attenuated in short day (SD) animals that display hypophagia and reduced adiposity. The aim of this study was to investigate whether the beneficial effects of a novel mimetic of FGF21 in the LD state are a consequence of increased adiposity or of the central photoperiodic state. This was achieved by investigating effects of FGF21 in aged hamsters, which is associated with reduced adiposity. In LD hamsters with increased adiposity, FGF21 lowered body weight as a result of both reduced daily food intake and increased caloric expenditure, driven by an increase in whole-body fat oxidation. However, in LD animals with reduced adiposity, the effect of FGF21 on body weight, caloric intake and fat oxidation were significantly attenuated or absent when compared to those with increased adiposity. These attenuated/absent effects were underpinned by the inability of FGF21 to increase the expression of key thermogenic genes in interscapular and visceral WAT. Our study demonstrates the efficacy of a novel FGF21 mimetic in hamsters, but reveals attenuated effects in the animal model where adiposity is reduced naturally independent of photoperiod.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.95e972ce73d34b99befdbcf40d02600f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-03607-x