Back to Search Start Over

Effects of Multi-Growth Periods UAV Images on Classifying Karst Wetland Vegetation Communities Using Object-Based Optimization Stacking Algorithm

Authors :
Ya Zhang
Bolin Fu
Xidong Sun
Hang Yao
Shurong Zhang
Yan Wu
Hongyuan Kuang
Tengfang Deng
Source :
Remote Sensing, Vol 15, Iss 16, p 4003 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Combining machine learning algorithms with multi-temporal remote sensing data for fine classification of wetland vegetation has received wide attention from researchers. However, wetland vegetation has different physiological characteristics and phenological information in different growth periods, so it is worth exploring how to use different growth period characteristics to achieve fine classification of vegetation communities. To resolve these issues, we developed an ensemble learning model by stacking Random Forest (RF), CatBoost, and XGBoost algorithms for karst wetland vegetation community mapping and evaluated its classification performance using three growth periods of UAV images. We constructed six classification scenarios to quantitatively evaluate the effects of combining multi-growth periods UAV images on identifying vegetation communities in the Huixian Karst Wetland of International Importance. Finally, we clarified the influence and contribution of different feature bands on vegetation communities’ classification from local and global perspectives based on the SHAP (Shapley Additive explanations) method. The results indicated that (1) the overall accuracies of the four algorithms ranged from 82.03% to 93.37%, and the classification performance was Stacking > CatBoost > RF > XGBoost in order. (2) The Stacking algorithm significantly improved the classification results of vegetation communities, especially Huakolasa, Reed-Imperate, Linden-Camphora, and Cephalanthus tetrandrus-Paliurus ramosissimus. Stacking had better classification performance and generalization ability than the other three machine learning algorithms. (3) Our study confirmed that the combination of spring, summer, and autumn growth periods of UAV images produced the highest classification accuracy (OA, 93.37%). In three growth periods, summer-based UAVs achieved the highest classification accuracy (OA, 85.94%), followed by spring (OA, 85.32%) and autumn (OA, 84.47%) growth period images. (4) The interpretation of black-box stacking model outputs found that vegetation indexes and texture features provided more significant contributions to classifying karst wetland vegetation communities than the original spectral bands, geometry features, and position features. The vegetation indexes (COM and NGBDI) and texture features (Homogeneity and Standard Deviation) were very sensitive when distinguishing Bermudagrass, Bamboo, and Linden-Camphora. These research findings provide a scientific basis for the protection, restoration, and sustainable development of karst wetlands.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
16
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.95bedb5c62e4acca1337ee62eaa95d3
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15164003