Back to Search Start Over

Automated Smart Home Assessment to Support Pain Management: Multiple Methods Analysis

Authors :
Fritz, Roschelle L
Wilson, Marian
Dermody, Gordana
Schmitter-Edgecombe, Maureen
Cook, Diane J
Source :
Journal of Medical Internet Research, Vol 22, Iss 11, p e23943 (2020)
Publication Year :
2020
Publisher :
JMIR Publications, 2020.

Abstract

BackgroundPoorly managed pain can lead to substance use disorders, depression, suicide, worsening health, and increased use of health services. Most pain assessments occur in clinical settings away from patients’ natural environments. Advances in smart home technology may allow observation of pain in the home setting. Smart homes recognizing human behaviors may be useful for quantifying functional pain interference, thereby creating new ways of assessing pain and supporting people living with pain. ObjectiveThis study aimed to determine if a smart home can detect pain-related behaviors to perform automated assessment and support intervention for persons with chronic pain. MethodsA multiple methods, secondary data analysis was conducted using historic ambient sensor data and weekly nursing assessment data from 11 independent older adults reporting pain across 1-2 years of smart home monitoring. A qualitative approach was used to interpret sensor-based data of 27 unique pain events to support clinician-guided training of a machine learning model. A periodogram was used to calculate circadian rhythm strength, and a random forest containing 100 trees was employed to train a machine learning model to recognize pain-related behaviors. The model extracted 550 behavioral markers for each sensor-based data segment. These were treated as both a binary classification problem (event, control) and a regression problem. ResultsWe found 13 clinically relevant behaviors, revealing 6 pain-related behavioral qualitative themes. Quantitative results were classified using a clinician-guided random forest technique that yielded a classification accuracy of 0.70, sensitivity of 0.72, specificity of 0.69, area under the receiver operating characteristic curve of 0.756, and area under the precision-recall curve of 0.777 in comparison to using standard anomaly detection techniques without clinician guidance (0.16 accuracy achieved; P

Details

Language :
English
ISSN :
14388871
Volume :
22
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Journal of Medical Internet Research
Publication Type :
Academic Journal
Accession number :
edsdoj.95b9ac80a94639b9dbc3b2a211b978
Document Type :
article
Full Text :
https://doi.org/10.2196/23943