Back to Search Start Over

A Forest Fire Prediction Method for Lightning Stroke Based on Remote Sensing Data

Authors :
Zhejia Zhang
Ye Tian
Guangyu Wang
Change Zheng
Fengjun Zhao
Source :
Forests, Vol 15, Iss 4, p 647 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Forest fires ignited by lightning accounted for 68.28% of all forest fires in the Greater Khingan Mountains (GKM) region of northeast China. Forecasting the incidence of lightning-triggered forest fires in the region is imperative for mitigating deforestation, preserving biodiversity, and safeguarding distinctive natural habitats and resources. Lightning monitoring data and vegetation moisture content have emerged as pivotal factors among the various influences on lightning-induced fires. This study employed innovative satellite remote sensing technology to swiftly acquire vegetation moisture content data across extensive forested regions. Firstly, the most suitable method to identify the lightning strikes that resulted in fires and two crucial lightning parameters correlated with fire occurrence are confirmed. Secondly, a logistic regression method is proposed for predicting the likelihood of fires triggered by lightning strikes. Finally, the method underwent verification using five years of fire data from the GKM area, resulting in an AUC value of 0.849 and identifying the primary factors contributing to lightning-induced fires in the region.

Details

Language :
English
ISSN :
19994907
Volume :
15
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Forests
Publication Type :
Academic Journal
Accession number :
edsdoj.957851c47e864580a9f1da67ab3e9d20
Document Type :
article
Full Text :
https://doi.org/10.3390/f15040647