Back to Search Start Over

Driver of the Positive Ionospheric Storm over the South American Sector during 4 November 2021 Geomagnetic Storm

Authors :
Changzhi Zhai
Shenquan Tang
Wenjie Peng
Xiaoyun Cheng
Dunyong Zheng
Source :
Remote Sensing, Vol 15, Iss 1, p 111 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

During geomagnetic storms, ionospheric storms can be driven by several mechanisms. Observations performed using ground- and space-based instruments were used to reveal the driver of the positive ionospheric storm over the South American sector during the 4 November 2021 geomagnetic storm. The positive storm appeared from 10:30 UT to 18:00 UT and covered the region from 40°S to 20°N. The maximum magnitudes of TEC (Total Electron Content) enhancement and relative TEC enhancement were about 20 TECU and 100%, respectively. Defense Meteorological Satellite Program (DMSP) also observed a significant electron density increase over South America and the eastern Pacific Ocean. In the meantime, about 50% ∑O/N2 enhancement was observed by the Global-scale Observations of the Limb and Disk (GOLD) satellite at low latitudes. Ionosonde observations (AS00Q and CAJ2M) registered an ~80 km uplift in F2 peak height (HmF2) and a prominent F2 peak electron density (NmF2) increase ~3 h after the uplift. A prominent enhancement in the cross-polar cap potential (CPCP) in the southern hemisphere was also observed by Super Dual Auroral Radar Network (SuperDARN) one hour earlier than the HmF2 uplift. Measurements of the Ionospheric Connection Explorer satellite (ICON) showed that the outward E×B drift was enhanced significantly and that the horizontal ion drift was poleward. According to the ICON ion drift observations, the HmF2 uplift was caused by an electric field rather than equatorward neutral wind. We propose that the enhanced eastward electric field dominated the positive ionospheric storm and that the thermospheric composition variation may have also contributed.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.954f0d6d8384fe5be715f2e3f41444d
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15010111