Back to Search
Start Over
Grounding rod hanging and removing robot with hand-eye self-calibration capability in substation
- Source :
- Complex & Intelligent Systems, Vol 10, Iss 5, Pp 6491-6507 (2024)
- Publication Year :
- 2024
- Publisher :
- Springer, 2024.
-
Abstract
- Abstract In this paper, a robot system for hanging and removing grounding rods is designed by integrating 3D recognition technology, hand-eye self-calibration technology, and automatic operation technology. Specifically, a novel hand-eye self-calibration algorithm is proposed that only uses common objects in the actual scene, which differs from traditional robot hand-eye calibration in that it requires a dedicated calibration board to assist with offline completion. Addressing the problem that existing self-calibration methods cannot be optimized as a whole, resulting in low accuracy and instability of the solution, a multi-stage objective function optimization self-calibration algorithm is proposed. An optimization method based on the minimization of re-projection error is designed to compensate for the results, which uses an efficient Oriented fast and rotated brief (ORB) feature extraction algorithm and introduces a scoring mechanism to retain more correct matching points in the feature matching stage. Experimental verifications are conducted using both public dataset and practical robot system. In the dataset experiment, our method demonstrates superior accuracy and robustness compared to existing self-calibration methods. Furthermore, the practical robot platform experiment confirms the feasibility and efficacy of our approach across various wind speeds and lighting conditions.
Details
- Language :
- English
- ISSN :
- 21994536 and 21986053
- Volume :
- 10
- Issue :
- 5
- Database :
- Directory of Open Access Journals
- Journal :
- Complex & Intelligent Systems
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.94e8d4fff4afe83654f1a0e4b2409
- Document Type :
- article
- Full Text :
- https://doi.org/10.1007/s40747-024-01492-2