Back to Search Start Over

Harnessing the Anti-Nociceptive Potential of NK2 and NK3 Ligands in the Design of New Multifunctional μ/δ-Opioid Agonist–Neurokinin Antagonist Peptidomimetics

Authors :
Charlène Gadais
Justyna Piekielna-Ciesielska
Jolien De Neve
Charlotte Martin
Anna Janecka
Steven Ballet
Source :
Molecules, Vol 26, Iss 17, p 5406 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic μ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual μ/δ opioid agonist H-Dmt-d-Arg-Aba-βAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range μ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids.

Details

Language :
English
ISSN :
14203049
Volume :
26
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.94ab8e3827234a1e9280634ddfec46e4
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules26175406