Back to Search
Start Over
Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation
- Source :
- Scientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
- Publication Year :
- 2017
- Publisher :
- Nature Portfolio, 2017.
-
Abstract
- Abstract Treatment of full-thickness skin defects poses significant clinical challenges including risk of infection and severe scaring. Silver nanoparticle (NAg), an effective antimicrobial agent, has provided a promising therapeutic method for burn wounds. However, the detailed mechanism remains unknown. Hence, we constructed a metallic nanosilver particles-collagen/chitosan hybrid scaffold (NAg-CCS) and investigated its potential effects on wound healing. In vitro scratch assay, immunofluorescence staining and antibacterial activity of the scaffold were all studied. In vivo NAg-CCS was applied in full-thickness skin defects in Sprague-Dawley (SD) rats and the therapeutic effects of treatment were evaluated. The results showed that NAg at a concentration of 10 ppm accelerated the migration of fibroblasts with an increase in expression of α-smooth muscle actin (α-SMA). Furthermore, in vivo studies showed increased levels of pro-inflammatory and scar-related factors as well as α-SMA, while markers for macrophage activation were up-regulated. On day 60 post transplantation of ultra-thin skin graft, the regenerated skin by NAg-CCS had a similar structure to normal skin. In summary, we demonstrated that NAg-CCS was bactericidal, anti-inflammatory and promoted wound healing potentially by regulating fibroblast migration and macrophage activation, making it an ideal dermal substitute for wound regeneration.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.942f3354ef904106a52a96ac229a0f44
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-017-10481-0