Back to Search Start Over

Exploring the cellular surface polysaccharide and root nodule symbiosis characteristics of the rpoN mutants of Bradyrhizobium sp. DOA9 using synchrotron-based Fourier transform infrared microspectroscopy in conjunction with X-ray absorption spectroscopy

Authors :
Jenjira Wongdee
Pongdet Piromyou
Pongpan Songwattana
Teerana Greetatorn
Nantakorn Boonkerd
Neung Teaumroong
Eric Giraud
Djamel Gully
Nico Nouwen
Worawikunya Kiatponglarp
Waraporn Tanthanuch
Panlada Tittabutr
Source :
Microbiology Spectrum, Vol 11, Iss 5 (2023)
Publication Year :
2023
Publisher :
American Society for Microbiology, 2023.

Abstract

ABSTRACT The functional significance of rpoN genes that encode two sigma factors in the Bradyrhizobium sp. strain DOA9 has been reported to affect colony formation, root nodulation characteristics, and symbiotic interactions with Aeschynomene americana. rpoN mutant strains are defective in cellular surface polysaccharide (CSP) production compared with the wild-type (WT) strain, and they accordingly exhibit smaller colonies and diminished symbiotic effectiveness. To gain deeper insights into the changes in CSP composition and the nodules of rpoN mutants, we employed synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy. FTIR analysis of the CSP revealed the absence of specific components in the rpoN mutants, including lipids, carboxylic groups, polysaccharide-pyranose rings, and β-galactopyranosyl residues. Nodules formed by DOA9WT exhibited a uniform distribution of lipids, proteins, and carbohydrates; mutant strains, particularly DOA9∆rpoNp:ΩrpoNc, exhibited decreased distribution uniformity and a lower concentration of C=O groups. Furthermore, Fe K-edge X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses revealed deficiencies in the nitrogenase enzyme in the nodules of DOA9∆rpoNc and DOA9∆rpoNp:ΩrpoNc mutants; nodules from DOA9WT and DOA9∆rpoNp exhibited both leghemoglobin and the nitrogenase enzyme. IMPORTANCE This work provides valuable insights into how two rpoN genes affect the composition of cellular surface polysaccharides (CSPs) in Bradyrhizobium sp., which subsequently dictates root nodule chemical characteristics and nitrogenase production. We used advanced synchrotron methods, including synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy (XAS), for the first time in this field to analyze CSP components and reveal the biochemical changes occurring within nodules. These cutting-edge techniques confer significant advantages by providing detailed molecular information, enabling the identification of specific functional groups, chemical bonds, and biomolecule changes. This research not only contributes to our understanding of plant-microbe interactions but also establishes a foundation for future investigations and potential applications in this field. The combined use of the synchrotron-based FTIR and XAS techniques represents a significant advancement in facilitating a comprehensive exploration of bacterial CSPs and their implications in plant-microbe interactions.

Details

Language :
English
ISSN :
21650497
Volume :
11
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Microbiology Spectrum
Publication Type :
Academic Journal
Accession number :
edsdoj.940c938c9c22407794e94b617e372a64
Document Type :
article
Full Text :
https://doi.org/10.1128/spectrum.01947-23