Back to Search Start Over

Human phospho‐signaling networks of SARS‐CoV‐2 infection are rewired by population genetic variants

Authors :
Diogo Pellegrina
Alexander T Bahcheli
Michal Krassowski
Jüri Reimand
Source :
Molecular Systems Biology, Vol 18, Iss 5, Pp 1-17 (2022)
Publication Year :
2022
Publisher :
Springer Nature, 2022.

Abstract

Abstract SARS‐CoV‐2 infection hijacks signaling pathways and induces protein–protein interactions between human and viral proteins. Human genetic variation may impact SARS‐CoV‐2 infection and COVID‐19 pathology; however, the genetic variation in these signaling networks remains uncharacterized. Here, we studied human missense single nucleotide variants (SNVs) altering phosphorylation sites modulated by SARS‐CoV‐2 infection, using machine learning to identify amino acid substitutions altering kinase‐bound sequence motifs. We found 2,033 infrequent phosphorylation‐associated SNVs (pSNVs) that are enriched in sequence motif alterations, potentially reflecting the evolution of signaling networks regulating host defenses. Proteins with pSNVs are involved in viral life cycle and host responses, including RNA splicing, interferon response (TRIM28), and glucose homeostasis (TBC1D4) with potential associations with COVID‐19 comorbidities. pSNVs disrupt CDK and MAPK substrate motifs and replace these with motifs of Tank Binding Kinase 1 (TBK1) involved in innate immune responses, indicating consistent rewiring of signaling networks. Several pSNVs associate with severe COVID‐19 and hospitalization (STARD13, ARFGEF2). Our analysis highlights potential genetic factors contributing to inter‐individual variation of SARS‐CoV‐2 infection and COVID‐19 and suggests leads for mechanistic and translational studies.

Details

Language :
English
ISSN :
20211082 and 17444292
Volume :
18
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Molecular Systems Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.93f84872065a4679bfa431cc87c11935
Document Type :
article
Full Text :
https://doi.org/10.15252/msb.202110823