Back to Search Start Over

Effects of fungal infection on feeding and survival of Anopheles gambiae (Diptera: Culicidae) on plant sugars

Authors :
Sopher N Ondiaka
Elizabeth W Masinde
Constantianus JM Koenraadt
Willem Takken
Wolfgang R Mukabana
Source :
Parasites & Vectors, Vol 8, Iss 1, Pp 1-11 (2015)
Publication Year :
2015
Publisher :
BMC, 2015.

Abstract

Abstract Background The entomopathogenic fungus Metarhizium anisopliae shows great promise for the control of adult malaria vectors. A promising strategy for infection of mosquitoes is supplying the fungus at plant feeding sites. Methods We evaluated the survival of fungus-exposed Anopheles gambiae mosquitoes (males and females) fed on 6% glucose and on sugars of Ricinus communis (Castor oil plant) and Parthenium hysterophorus (Santa Maria feverfew weed). Further, we determined the feeding propensity, quantity of sugar ingested and its digestion rate in the mosquitoes when fed on R. communis for 12 hours, one and three days post-exposure to fungus. The anthrone test was employed to detect the presence of sugar in each mosquito from which the quantity consumed and the digestion rates were estimated. Results Fungus-exposed mosquitoes lived for significantly shorter periods than uninfected mosquitoes when both were fed on 6% glucose (7 versus 37 days), R. communis (7 versus 18 days) and P. hysterophorus (5 versus 7 days). Significantly fewer male and female mosquitoes, one and three days post-exposure to fungus, fed on R. communis compared to uninfected controls. Although the quantity of sugar ingested was similar between the treatment groups, fewer fungus-exposed than control mosquitoes ingested small, medium and large meals. Digestion rate was significantly slower in females one day after exposure to M. anisopliae compared to controls but remained the same in males. No change in digestion rate between treatments was observed three days after exposure. Conclusions These results demonstrate that (a) entomopathogenic fungi strongly impact survival and sugar-feeding propensity of both sexes of the malaria vector An. gambiae but do not affect their potential to feed and digest meals, and (b) that plant sugar sources can be targeted as fungal delivery substrates. In addition, targeting males for population reduction using entomopathogenic fungi opens up a new strategy for mosquito vector control.

Details

Language :
English
ISSN :
17563305
Volume :
8
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Parasites & Vectors
Publication Type :
Academic Journal
Accession number :
edsdoj.93d7232adc484c6baf88614e341def79
Document Type :
article
Full Text :
https://doi.org/10.1186/s13071-015-0654-3