Back to Search
Start Over
Bayesian Estimation of Potential Performance Improvement Elicited by Robot-Guided Training
- Source :
- Frontiers in Neuroscience, Vol 15 (2021)
- Publication Year :
- 2021
- Publisher :
- Frontiers Media S.A., 2021.
-
Abstract
- Improving human motor performance via physical guidance by an assist robot device is a major field of interest of the society in many different contexts, such as rehabilitation and sports training. In this study, we propose a Bayesian estimation method to predict whether motor performance of a user can be improved or not by the robot guidance from the user’s initial skill level. We designed a robot-guided motor training procedure in which subjects were asked to generate a desired circular hand movement. We then evaluated the tracking error between the desired and actual subject’s hand movement. Results showed that we were able to predict whether a novel user can reduce the tracking error after the robot-guided training from the user’s initial movement performance by checking whether the initial error was larger than a certain threshold, where the threshold was derived by using the proposed Bayesian estimation method. Our proposed approach can potentially help users to decide if they should try a robot-guided training or not without conducting the time-consuming robot-guided movement training.
Details
- Language :
- English
- ISSN :
- 1662453X and 93760833
- Volume :
- 15
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.93760833a9ea4b7ab6569b74d3ceb317
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fnins.2021.704402